Facial Expression Recognition with Convolutional Networks

DSC672 Project Report

Zhong Zhong

Facial Expression Recognition with Convolutional
Networks

Zhong Zhong, zzhongd@depaul.edu
November 24, 2020

Abstract

Researchers have been studying facial expression recognition for a long
time, because it is important in a broad of fields, such as robotics, medical
treatment, and visual-interactive games. Recently, deep learning models,
especially Convolutional neural networks (CNNs), have become the dom-
inant machine learning approach for image recognition tasks [11]. With
the use of CNN models, computer vision tasks as facial recognition can
often achieve state-of-the-art (SOTA) accuracy. In this project, a dataset,
Facial Expression Recognition challenge (FRE2013), which contains seven
main human facial expressions, Angry, Disgust, Fear, Happy, Sad, Sur-
prise, Neutral, is applied on different CNN models that we build from
scratch based on the principles of previous SOTAs. To further study how
the CNN models work, we also include activation map visualizations for
the convolutional network model.

1 Introduction

Human facial expressions play a important role in human information exchange
process. With the fast development of artificial intelligence, it is enormously
beneficial for Artificial Intelligence devices or programs to be able to recognize
human’s facial expressions. Such AI products can be applied to a broad of
different domains, such as robotics, medical treatment, and visual-interactive
games.

Deep convolutional networks have recently achieved outstanding performance
in various different visual tasks. It has been proved that CNNs are more robust
to the nature of image data compared to conventional machine learning models.
We believe that SOTA CNNs will achieve well performance on facial expression
recognition as well. Therefore, in this project, we present three different ap-
proaches based on Convolutional network for the facial expression recognition
task, FRE2013.

There has been a variety of SOTA CNNs presented. Many of them tried to
modify the earlier SOTASs in order to improve the overall accuracy. On common
strategy to improve architecture accuracy is to add more layers to the model.
We embrace this method and construct a deeper network on our first baseline
LeNet-like model. Another strategy is to use special layer module designs, such
as inception module, shortcut connection, and dense connection. To further
improve model accuracy, we also try to use shortcut connection in our project.

2 Related Work

2.1 Convolutional Networks

Ever since AlexNet [1] after 2012, convolutional Networks, such as AlexNet, VG-
GNets [2], Inceptions [3], ResNets [4], MobileNet [5] and most recently purely
supervised network EfficientNets [6], are the dominate machine learning meth-
ods for visual tasks. They all achieved state-of-the-art performance on the
benchmarked image classification task, ImageNet Classification challenge. Also,
they have achieved one after another state-of-the-art performance on other vi-
sual tasks, such as image segmentation, object detection and so on.

Later models were built on top of earlier models and improved using different
useful methods. One common method that researchers used is to add the more
layers or more feature maps to the architecture, for example, VGGNets outper-
formed AlexNet by adding up to 11 more convolution layers. Another example
is MobileNets largely improved the efficient and accuracy compared to models
with similar size by adding Width Multiplier and Resolution Multiplier that
can adjust the number of channels and layers in the model. Another common
method to improve architecture is to use skip connections/shortcut connection.
ResNets first introduced the simple identity connection which popularized this
method. Skip connections can be seen in almost all different architecture after
ResNets.

2.2 Facial Expression Recognition

Several works [7] [8] [9] have studied the Facial Expression Recognition Chal-
lenge dataset. All these works adopted convolutional network as their method-
ology. At first, a base small CNN model was built, and modifications such as
increasing the depth and the width were applied on top of the base model to
improve the model performance. [9] tried to use transfer learning by both fine-
tuning AlexNet and VGGNet and training from scratch, but they found these
two models trained on ImageNet dataset performed unexpectedly due to the
much smaller size (48*48) and less variance compared to the ImageNet dataset.

3 Data

The dataset was obtained from Kaggle Facial Expression Recognition (FER2013)
Challenge by Microsoft. It consists of 35,887, 48x48 pixels gray-scaled images of
different human faces, in which each face corresponds to one of the seven main
human facial expressions, namely Angry, Disgust, Fear, Happy, Sad, Surprise,
Neutral. The images are processed in such a way that the faces are centered,
Figure 1 shows an example of each expressions. There are 28,709 training im-
ages and 3,589 test images. After loading the raw images, we normalize them
by re-scaling to the range between 0 and 1. Further, in order to increase the
variance of the data and alleviate the over-fitting problem, three different data
augmentations, random flipping, rotating and zooming are used.

- - L.
- .
{ap [L] [C1]
bl & @
O m)
Figure 1: This is the example of facial expressions from FER2013.

4 Method

Recognizing facial expression images is essentially an image classification task.
Therefore, we believe a SOTA image classification CNN architecture can also
perform well on facial expression classification. We tried different CNN SOTA
models, including LeNet5, VGGNets, and ResNets. Because images in FER2013
are smaller than that in ImageNet dataset used to train those SOTA, we cus-
tomed above architectures to create three new versions, namely, LeNet-like,
VGGNet-like, and ResNet-like. However, all the customed versions share some
characteristics. First for each convolutional layer, the filter size is 3 and the
stride is 2. Second, each convolutional and fully connected layer, except the
output layer, follow with Batch Normalization in order to speed up the training
process and add more regularization . (See Appendix A for model details)

4.1 LeNet-like CNN model

The plain baseline mode is inspired by the principle of LeNet5 [10]. In the
LeNet5 model, the input data has a size of 28x28, its size is very close to the
image size in our dataset, FER2013. Although the FER2013 facial recognition
task is more complicated task than the handwritten digit recognition in LeNet5.
We think it is a good start point to gradually build more complex and better
models.

The LeNet-like network consists of five weighted layers, three convolutional
layer and two fully connected layers. Max pooling layer is used after every
convolutional layer in order to perform downsampling. The network ends with
a 7-way fully connected layer with softmax. (see Figure 8)

4.2 VGGNet-like CNN model

VGGNets outperform AlexNet by simply using small size of filters and strides
and more importantly increasing the number of layers in the network. I add
more layers and feature maps to the LeNet-like CNN model and make it a much
deeper 10-layer network (see Figure 9).

4.3 ResNet-like CNN model

According to ResNets, identity connections (Figure 2) can not only alleviate the
gradient vanishing problem, but also improve the overall architecture perfor-

identity

A Building Block of Residual Network

Figure 2: This is the shortcut connection in ResNet.

mance. Based on the above VGGNet-like model, we insert shortcut connections
which turn the network into its counterpart residual version (see Figure 10). In
order to match the input size of the shortcut with its output, a projection (1x1
convolution) is used to increase the number of feature maps.

5 Experiment Results

5.1 Data augmentation

The LeNetb-like model first appears to overfit the dataset at first. Figure
3exhibits the results of this model. this 5-layer LeNet-like network achieves
51.0 percent accuracy on test set, the training accuracy, however, arises to 80
percent very quickly. To reduce the significant overfitting problem, we tried a
few data-augmentation techniques. For example, we randomly select some im-
ages to flip horizontally before feeding into the network and another example is
to rotation the image before feeding into the model. By doing these data aug-
mentation, the total images entered to the model will be significantly increased,
thus the model have more data samples to train. This data augmentation tech-
nique largely reduces the gap between the train and test accuracy. (Figure
1)

5.2 Shallow vs Deeper Models

To compare the performance of the shallow model (LeNet-like) with the deeper
model (VGGNet-like), we plotted the loss history and the obtained accuracy in
LeNet5-like network and VGGNet-like network. Figures 5 exhibits the results.

The most obvious difference between LeNet5-like network and VGGNet-like
network is their depth. LeNet5-like network has 5 layers, whereas VGGNet-like
has 10. The key difference leads to the performance discrepancy between these
two models. As seen in 5, the deep network enabled us to increase the validation
accuracy by 3-4 percent.

5.3 Shortcut Connections

To achieve better accuracy, we insert shortcut connections to the VGGNet-like
model. An extra 1x1 convolutional layer is also added to the shortcut inputs to

Training and Validation Accuracy Training and Validation Loss

080) — Training Loss
es] T Validation Loss
- n Los
075
160
070
155
0865
150
060
145
055
| 10
050 /" — Training Accuracy
- Validation Accuracy

0 2 4 [8 0 2 4 6 8
epochs epochs

Figure 3: This is results of LeNet-like model without regularization techniques

Training and Validation Accuracy

055
N
A
050 |
II II |
P
= 0.45
]
[
0.40
= LeMNet5 Test Accuracy
035 LeNet5 with Data Augumentation Test Accuracy
— LeNet5 with Dropout Test Accuracy

T T T T T T
o 10 20 30 40 50
epochs

Figure 4: This is the results of LeNet-like model with regularization techniques

Training and Validation Accuracy Training and Validation Loss
—— LeNet5 with Data Augumentation Training Loss
o7 LeNet5 with Data Augumentation Test Loss
—— VGG Training Loss
—— VGG Test Loss
18
06
LAY
At Al
Y v \'\ | M' ¥
| V | 17
05
16
04
03 —— LeNetS with Data Augumentation Training Accuracy 15
LeNet5 with Data Augumentation Test Accuracy
—— VGG Training Accuracy
—— VGG Test Accuracy
b 5 = B 10 uUs 180 s 0 5 w5 10 1w 180 s
epochs epochs

Figure 5: This is results of LeNet-like model vs VGGNet-like model

Training and Validation Accuracy Training and Validation Accuracy

—— VGG Training Accuracy —— VGG Res Training Accuracy
VGG Validation Accuracy VGG Res Validation Accuracy

0 20 40 E 8 00 120 40 160 0 20 0 0 @ 100 120 140 160
epochs epochs

Figure 6: This is results of VGGNet-like vs ResNet-like

match the output size. Figure 6 and table exhibit the results.

We have the major observations from Table 2 and Fig. 4. First, the
VGGNet-like with shortcut connections is better than its original format with-
out shortcut connections, as it is seen in table, compared to its plain counterpart,
the model with shortcut connection increases the accuracy by more than 2 per-
cent. Second, we also note that the model with shortcut connections converges
faster (Figure 6 Right vs Left). The model eases the optimization by providing
faster convergence.

5.4 Visualize the CONVNets

Visualizing the output of a model is way to understand how machine learning
models work, Same to CNN models. To study how the deep CNN model can
classify the input image, we visualize the intermediate layers activations of the
model.

The activation map is shown in Figure 7. The top layer maintains the shape
of the original image even though several feature maps are not activated and
left blank. At this stage, the layer activations keep almost all of the information
present in the input picture. And, as it goes deeper, the layer activations become
increasingly abstract and less visually interpretable. According to [12] This is
because deeper layers begin to encode higher-level feature such as single nose,
mouth, or eyes. Higher presentations carry increasingly less information about
the visual contents of the image, but including more information related to the
class the original image.

By visulizing the layer activations, we learned that early layers learn simple
features, whereas deeper layers appear to capture more complex features that is
useful for classifying the image categories. This characteristic of convolutional
layers actually explain adding more layers to a model will help improve model
performance.

6 Conclusion

In this project, we developed three different CNNs for a facial expression recog-
nition problem and evaluated their performances using visualization techniques.
We found that both using deep models and adopting shortcut connection can

conv2d_125

o 100 20 300 400 500 600 700

Figure 7: Visualization of intermediate layer activations

Model | Test Accuracy(percent)
LeNetb-like o1
LeNet-like with data Augmentation 53
VGG-like 56
ResNet-like 58

Table 1: Test Accuracy.

improve CNN performance. Due to limited time and computational resource,
the models trained in this projects achieved as high as 58 percent test accuracy
(see Table 1). For feature works, more complex can be applied to this dataset
to have better performance. Also, more data needs to be collected in order to
train much larger models.

References

[1] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6), 84-90.

[2] Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ...
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp. 1-9).

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770-778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., ... Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Tan, M., Le, Q. V. (2019). Efficientnet: Rethinking model scaling for con-
volutional neural networks. arXiv preprint arXiv:1905.11946.

Shima, A., Fazel, A. (2016). Convolutional neural networks for facial ex-
pression recognition. ArXiv2016, 3.

Yu, Z., Zhang, C. (2015, November). Image based static facial expression
recognition with multiple deep network learning. In Proceedings of the 2015
ACM on international conference on multimodal interaction (pp. 435-442).

Wan, W., Yang, C., Yang, L. (2017) Facial Expression Recognition Using
Convlutional Neural Network A Case Study of The Relationship Between
Dataset Characteristics and Network Performance.

[10] LeCun, Y. (2015). LeNet-5, convolutional neural networks. URL:

http://yann. lecun. com/exdb/lenet, 20(5), 14.

[11] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4700-4708).

[12] Chollet, F. (2018). Deep Learning mit Python und Keras: Das Praxis-

Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH Co.
KG.

rescaling_61_input: InputLayer
rescaling_61: Rescaling
random_flip_20: RandomFlip

random_rotation_20: RandomRotation

)

random_zoom_19: RandomZoom ‘

conv2d_125: Conv2D

‘ batch_normalization_136: BatchNormalization

!

‘ max_pooling2d_50: MaxPooling2D ‘

‘ batch_normalization_137: BatchNormalization

)

‘ max_pooling2d_51: MaxPooling2D ‘

‘ batch_normalization_138: BatchNormalization

)

‘ max_pooling2d_52: MaxPooling2D ‘

Figure 8: LeNet-like Architecture

conv2d_3_input: InputLayer

conv2d_3: Conv2D

batch_normalization_3: BatchNormalization

l

‘ max_pooling2d_3: MaxPooling2D |

conv2d_4: Conv2D

batch_normalization_4: BatchNormalization

l

‘ max_pooling2d_4: MaxPooling2D |

conv2d_5: Conv2D

batch_normalization_5: BatchNormalization

conv2d_6: Conv2D

batch_normalization_6: BatchNormalization

}

‘ max_pooling2d_5: MaxPooling2D |

conv2d_7: Conv2D

batch_normalization_7: BatchNormalization

conv2d_8: Conv2D

batch_normalization_8: BatchNormalization

!

‘ max_pooling2d_6: MaxPooling2D |

conv2d_9: Conv2D

batch_normalization_9: BatchNormalization

conv2d_10: Conv2D

‘ batch_normalization_10: BatchNormalization

l

‘ max_pooling2d_7: MaxPooling2D |

flatten_1: Flatten

dropout_1: Dropout

Figure 9: VGGNet-like Architecture

input_2: InputLayer

conv2d_22: Conv2D

batch_normalization_22: BatchNormalization

max_pooling2d_13: MaxPooling2D

conv2d_23: Conv2D

batch_normalization_23: BatchNormalization

max_pooling2d_14: MaxPooling2D

conv2d_24: Conv2D

batch_normalization_24: BatchNormalization | | conv2d_26: Conv2D |

] |

‘ conv2d_25: Conv2D ‘ ‘ batch_normalization_26: BatchNormalization

\

‘ batch_normalization_25: BatchNormalization

activation_3: Activation

max_pooling2d_15: MaxPooling2D

conv2d_27: Conv2D

batch_normalization_27: BatchNormalization | | conv2d_29: Conv2D |

I |

‘ conv2d_28: Conv2D ‘

batch_normalization_29: BatchNormalization

‘ batch_normalization_28: BatchNormalization

activation_4: Activation

max_pooling2d_16: MaxPooling2D

conv2d_30: Conv2D

‘batch_normalization_30: BatchNormalization conv2d_32: Conv2D |

| I

‘ conv2d_31: Conv2D ‘ ‘ batch_normalization_32: BatchNormalization

\

‘ batch_normalization_31: BatchNormalization

activation_5: Activation

max_pooling2d_17: MaxPooling2D

Figure 10: ResNet-like Architecture

